部分著作
1. Chen, J., Yin, W., Ding, J., Han, J., Zhang, L., Han, J., & Zhang, J*., Interaction-based rapid heuristic optimization of exoskeleton assistance during walking, Communications Engineering, 2025.
2. Yin, W., Jing, Z., Ding, J., Han, J., Han, J., & Zhang, J*., Stride-wise adaptive assistance strategy for ankle exoskeleton under varying walking conditions, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2025.
3. Jing, Z., Han, H., Han, J., & Zhang, J*., Effect of vest load carriage on cardiometabolic responses with load position, load mass, and walking conditions for young adults, Bioengineering 12 (2), 2025.
4. Jing, Z., Han, H., Han, J., & Zhang, J*., A relationship model between optimized exoskeleton assistance and gait conditions improves multi-gait human-in-the-loop optimization performance, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2025.
5. Slade, P., Atkeson, C., Donelan, J. M., Houdijk, H., Ingraham, K. A., Kim, M., Kong, K., Poggensee, K. L., Riener, R., Steinert, M., Zhang, J., & Collins, S. H., On human-in-the-loop optimization of human–robot interaction, Nature 633, 779–788, 2024.
6. Liu, Z., Han, J., Han, J., & Zhang, J., Design and evaluation of a lightweight, ligaments-inspired knee exoskeleton for walking assistance, IEEE Robotics and Automation Letters, 2024.
7. Chen, J., Ding, J., Han, J., & Zhang, J., Design and evaluation of a bilateral mobile ankle exoskeleton with high-efficiency actuation, IEEE Robotics and Automation Letters 9 (6), 2024.
8. Jing, Z., Han, J., & Zhang, J., Comparison of biomechanical analysis results using different musculoskeletal models for children with cerebral palsy, Frontiers in Bioengineering and Biotechnology 11, 2023.
9. Chen, J., Han, J., & Zhang, J., Design and evaluation of a mobile ankle exoskeleton with switchable actuation configurations, IEEE Transactions on Mechatronics, 2022.
10. Wang, W., Chen, J., Ding, J., Zhang, J., & Liu, J., Improving walking economy with an ankle exoskeleton prior to human-in-the-loop optimization, Frontiers in Neurorobotics 15, 2021.
11. Han, H., Wang, W., Zhang, F., Li, X., Chen, J., Han, J., & Zhang, J., Selection of muscle-activity-based cost function in human-in-the-loop optimization of multi-gait ankle exoskeleton assistance, IEEE Transactions on Neural Systems and Rehabilitation Engineering 29, 944–952, 2021.
12. Zhang, J., & Collins, S. H., The iterative learning gain that optimizes real-time torque tracking for ankle exoskeletons in human walking under gait variations, Frontiers in Neurorobotics, 2021.
13. Wang, W., Chen, J., Ji, Y., Jin, W., Liu, J., & Zhang, J., Evaluation of lower leg muscle activities during human walking assisted by an ankle exoskeleton, IEEE Transactions on Industrial Informatics 16 (11), 7168–7176, 2020.
14. Zhang, J., Fiers, P., Witte, K. A., Jackson, R. W., Poggensee, K. L., Atkeson, C. G., & Collins, S. H., Human-in-the-loop optimization of exoskeleton assistance during walking, Science 356, 1380–1384, 2017.
15. Zhang, J., Cheah, C. C., & Collins, S. H., Torque control in legged locomotion, in Bioinspired Legged Locomotion: Models, Concepts, Control and Applications, Elsevier, 2017.
16. Zhang, J., & Collins, S. H., The passive series stiffness that optimizes torque tracking for a lower-limb exoskeleton in human walking, Frontiers in Neurorobotics, 2017.
17. Zhang, J., & Cheah, C. C., Passivity and stability of human–robot interaction control for upper-limb rehabilitation robots, IEEE Transactions on Robotics 31 (2), 233–245, 2015.
讲授课程
本科:
1. 模拟电子技术, 48学时
研究生:
1. 机器人系统设计与实现, 48学时
2. 基于李雅普诺夫方法的非线性控制, 32学时